

ETINCELLE PHYSIQUE CHIME

Manuel de l'élève

El heddari Mohammed

Ex-Inspecteur pédagogique du cycle secondaire qualifiant (Coordinateur)

Fazazi Driss

Ex-Inspecteur pédagogique du cycle secondaire qualifiant

Mjahed Nour-eddine

Inspecteur pédagogique du cycle secondaire qualifiant

El-Khomssi El-ghali

Inspecteur pédagogique du cycle secondaire qualifiant

Ifadissen Abderrahim

Inspecteur pédagogique du cycle secondaire qualifiant

El ferroune Al radi

Inspecteur pédagogique du cycle secondaire qualifiant

Moujahid Rachid

Inspecteur pédagogique du cycle secondaire qualifiant

Exercice résolu

Exercices ...

Leçon 4	
Le principe d'inertie	.51
Activité expérimentale : Principe d'inertie	
Activité expérimentale : Centre d'inertie	
Activité expérimentale : Relation barycentrique	
Cours	
Auto-évaluation	57
Exercice résolu	58
Exercices	59
Leçon 5	
Force exercée par un ressort - Poussée	
d'Archimède	63
Activité expérimentale : La force exercée par un ressort	64
Activité expérimentale : Réaction d'un fluide	
Cours	
Auto-évaluation	
Exercice résolu	
Exercices	
Local	
Leçon 6	
Équilibre d'un corps soumis à l'action	
de trois forces	73
Activité expérimentale : Première condition d'équilib	
Activité expérimentale : Force de frottement	
Cours	
Auto-évaluation	
Exercice résolu	
Exercices	80
Leçon 7	
Équilibre d'un solide susceptible de tours	ner
autour d'un axe fixe	
autour d'un axe rixe	03
Activité expérimentale : Effet d'une force sur la rota	ation
d'un solide - moment d'une force	
Activité expérimentale : Couple de deux forces	
Activité expérimentale : 2ème Condition d'équilibre	
Activité expérimentale : Couple de torsion	87
Cours	88
Auto-évaluation	91
Exercice résolu	92
Exercices	93

Électricité

Leçon 1
Le courant électrique continu 99
Activité expérimentale : Électrisation de la matière100
Activité expérimentale : Le courant électrique 101
Activité expérimentale : Intensité du courant
électrique102
Cours 103
Auto-évaluation 107
Exercice résolu 108
Exercices 109
Leçon 2
zeyon z
La tension électrique 111
Activité expérimentale : Tension électrique continue112
Activité expérimentale : Mesure de la tension électrique 113
Activité expérimentale : Lois de la tension continue114
Activité expérimentale : Tension alternative sinusoïdale115
Cours 116
Auto-évaluation 120
Exercice résolu 121
Exercices 122
Leçon 3
Association de conducteurs ohmiques125
Association de conducteurs onninques125
Activité expérimentale : Notion de conductance 126
Activité expérimentale : Association de résistors127
Activité expérimentale : Montage diviseur de tension128
Cours 129
Auto-évaluation131
Exercice résolu132
Exercices 133
Leçon 4
Caractéristiques de quelques dipôles passifs 135

Activité expérimentale : Diodes	136
Activité documentaire : Quelques dipôles passifs	137
Cours	138
Auto-évaluation	140
Exercice résolu	141
Exercices	142
Leçon 5	
Caractéristique d'un dipôle actif	145
Activité expérimentale : Caractéristique d'un génér	ateur 146
Activité expérimentale : Caractéristique d'un	
électrolyseur	
Activité documentaire : Point de fonctionnemer	
circuit	
Cours	
Auto-évaluation	
Exercice résolu	
Exercices	154
Leçon 6	
Le transistor	157
Activité expérimentale : Le transistor	158
Activité expérimentale : Régimes de fonctionneme	nt d'un
transistor	159
Activité expérimentale : Quelques montages av	ec
transistor	160
Cours	161
Auto-évaluation	164
Exercice résolu	165
Exercices	166
Leçon 7	
L'amplificateur Opérationnel	160
Lampuncateur Operationnet	109
Activité expérimentale : L'amplificateur opération (AO)	
Activité expérimentale : Quelques montages ave	
ampli Op	
Cours	
Auto-évaluation	
Exercice résolu	
Exercices	1/6

Chimie

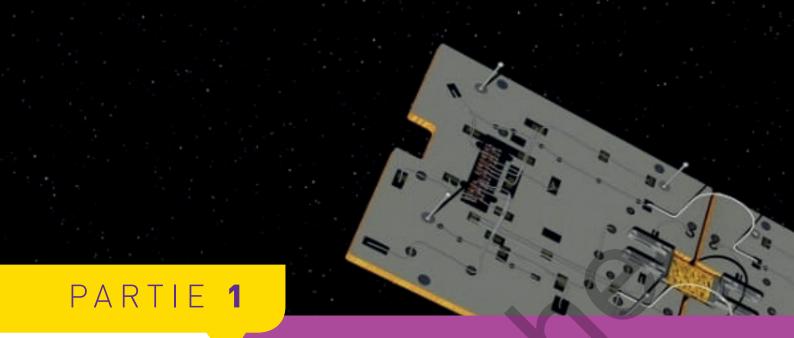
Leçon 1	
Les espèces chimiques	181
Activité expérimentale : Substances chimiques dans u produit naturel	
Activité expérimentale : Substances chimiques dans of produit manufacturé	
Activité expérimentale : Identification des espèces chimiques	184
Cours	
Auto-évaluation	189
Exercice résolu	190
Exercices	191
Extraction, Séparation et Identification des	
espèces chimiques	193
Activité expérimentale : L'extraction par solvant	194
Activité expérimentale : L'extraction par hydro-	
distillation	195
	iche
Activité expérimentale : Chromatographie sur cou	
mince (ccm)	
mince (ccm)	198
mince (ccm) Cours Auto-évaluation	198 201
Cours Auto-évaluation Exercice résolu	198 201 202
mince (ccm) Cours Auto-évaluation	198 201 202
CoursAuto-évaluationExercice résolu	198 201 202
Cours Auto-évaluation Exercice résolu Exercices	198 201 202 203
mince (ccm) Cours Auto-évaluation Exercice résolu Exercices Leçon 3 Synthèse des espèces chimiques Activité documentaire : Intérêt de la chimie de synthès	198 201 202 203 205 e 206
mince (ccm) Cours Auto-évaluation Exercice résolu Exercices Leçon 3 Synthèse des espèces chimiques Activité documentaire: Intérêt de la chimie de synthès Activité expérimentale: Synthèse d'une espèce chim	198 201 202 203 205 e206 ique
mince (ccm) Cours Auto-évaluation Exercice résolu Exercices Leçon 3 Synthèse des espèces chimiques Activité documentaire: Intérêt de la chimie de synthès	198 201 202 203 205 e206 ique 207

Auto-évaluation

Exercice résolu

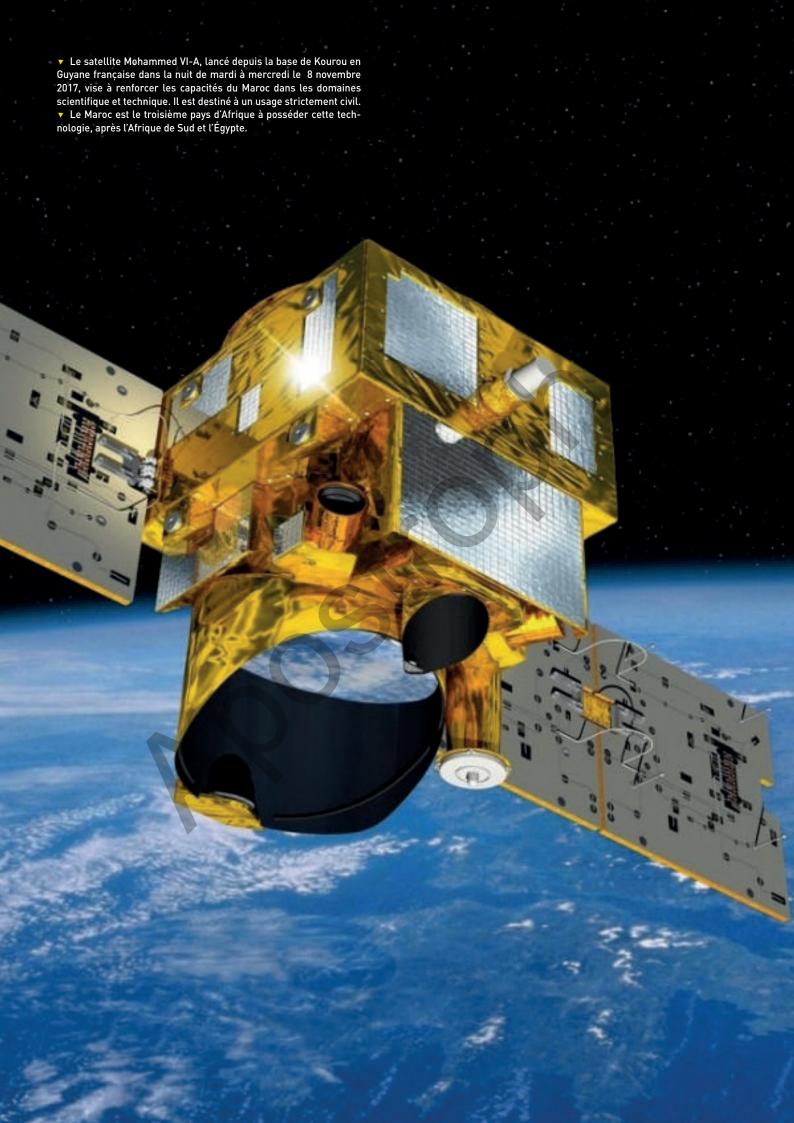
Exercices

210


211

212

Leçon 4	
Le modèle de l'atome 2	15
Activité documentaire : L'évolution du modèle de l'atome	216
Activité documentaire : Structure de la matière	217
Activité expérimentale : Les constituant de l'atome : noya cortège électronique	
Activité expérimentale : Conservation de l'élément	
chimique	
Cours	
Auto-évaluation	
Exercice résolu	
Exercices	227
Leçon 5	
Géométrie de quelques molécules 23	31
Activité documentaire : Règles du «duet» et de l'«octet»	232
Activité documentaire : Représentation de Lewis	233
Activité documentaire : Géométrie des molécules	234
Cours	235
Auto-évaluation	249
Exercice résolu	240
Exercices	241
Leçon 6	
Tableau périodique des éléments chimiques 24	43
Activité documentaire : Classification Périodique des éléme chimiques	
Cours	
Auto-évaluation	
Exercice résolu	
Exercices	
Leçon 7	
De l'échelle microscopique à l'échelle	
macroscopique : La mole	53
Activité documentaire : La mole : Unité de comptage des	254


Activité documentaire : La quantité de matière d'un g	gaz <u>255</u>	Exercice résolu	268
Cours	256	Exercices	269
Auto-évaluation	259		
Exercice résolu	260	Leçon 9	
Exercices	261		
		Transformation chimique - bilan	
Leçon 8		de la matière	271
Concentration molaire des espèces		Activité expérimentale : Modélisation de la transf	formation
moléculaires en solution	263	chimique	
		Activité expérimentale : Bilan de matière	273
Activité expérimentale : Dilution d'une solution	264	Cours	275
Cours	266	Auto-évaluation	279
Auto-évaluation	267	Exercice résolu	280
		Exercices	281

Outils et fiches ressources Réponse aux QCM Fiches T.P Fiches T.P Fiches T.P Glossaire - Index Bibliographie _____

Mécanique

Leçon 1	La Gravitation universelle	13
Leçon 2	Exemples d'actions mécaniques	23
Leçon 3	Le mouvement	36
Leçon 4	Le Principe d'inertie	51
Leçon 5	Force exercée par un ressort - Poussée d'Archimède	63
Leçon 6	Équilibre d'un corps soumis à l'action de trois forces	73
Leçon 7	Équilibre d'un corps susceptible de tourner autour d'un axe fixe	83

→ Répondre aux questions suivantes qui évoquent les pré-requis concernant la mécanique Indiquer la(les) bonne(s) réponse(s)

indiquer ta(tes) bornie(s) repons	se(s)		
	A	В	Ç
L'expression de le vitesse moyenne est :	$V_m = \frac{d}{\Delta t}$	$V_m = \frac{\Delta t}{d}$	$V_m=d\times\Delta t$
L'unité de la vitesse dans le système international est :	m.s ⁻¹	km.h ^{.1}	m.h ⁻¹
Si la valeur de la vitesse aug- mente au cours du mouve- ment, le mouvement est :	retardé	accéléré	uniforme
Le poids d'un corps est une action de :	à distance	de contact répartie	de contact localisée
L'unité de l'intensité de la force dans le système inter- national est :	le Newton (N)	le mètre (m)	le kilogramme (kg)
6 L'instrument de mesure de l'intensité d'une force est :	la balance	la règle graduée	le dynamomètre
7 L'intensité du poids s'exprime par la relation :	$P = \frac{m}{g}$	P = m.g	$P = \frac{g}{m}$
8 Le poids d'un corps :	diminue avec l'altitude	augmente avec l'altitude	reste invariable
9 Sur terre, le poids d'un corps est dû à :	la force d'attraction de la Terre	la force d'attraction du Soleil	la force de répulsion de la Terre
Si un solide est en équilibre soumis à deux forces, \vec{F}_1 et \vec{F}_2 :	$\vec{F}_1 = \vec{F}_2$	$\vec{F}_1 + \vec{F}_2 = \vec{O}$	$F_1 = F_2$
Quelle est la représentation juste ? (Sachant que le corps est au repos)	Î F	₽ţ	↑ F P ↓
Quelle est la représentation juste ? (Sachant que le corps est au repos)	G	G	†G

La gravitation universelle

Quelle est l'action responsable du mouvement des planètes autour du soleil ?

Objectifs d'apprentissages

- Connaître les forces d'attraction universelle.
- Connaître l'échelle des longueurs dans l'univers et dans l'atome.
- Connaître la loi d'attraction universelle (Relation de gravitation universelle).
- Connaître la force exercée par la Terre sur un corps : poids du corps P = m.g.
- Utiliser la relation : $g = g_0 \frac{R^2}{(R+h)^2}$

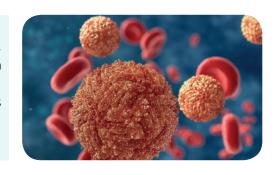
Prérequis

- Savoir les caractéristiques d'une force
- Savoir représenter un vecteur force
- Savoir le principe des actions réciproques

Prolongements

- Identification avec la loi de coulomb (1ère bac
- Loi de Kenler (2ème hac)
- Atome et mécanique de Newton (2^{ème} bac)

Les planètes gravitent autour du soleil sur des orbites bien définies, sans ni s'éloigner ni s'approcher.


Échelle des longueurs dans l'univers

Mise en situation

Les microscopes permettent la découverte des objets de plus en plus petits. Les télescopes, les satellites et les sondes spatiales permettent l'exploration

De l'infiniment petit à l'infiniment grand, les longueurs varient de quelques femto mètres à quelques milliards d'années lumières.

→ Comment peut-on classer ces longueurs?

Documents à analyser :

Galaxie d'Andromède Diamètre ≈ 220000 a.l

Terre - Lune Distance ≈ 384000 km

Corona virus Diamètre ≈ 100 nm

Atomes de silicium Diamètre ≈ 220 pm

Doc 1 : Dimensions d'objets de différentes tailles

Doc 2: Axe des ordres de grandeurs

- L'écriture scientifique d'un nombre est l'écriture de la forme : a. $10^n:1\leq a<10$ et n un entier naturel.
- L'ordre de grandeur est la puissance de dix la plus proche du nombre : $10^{n} \text{ si a} < 5, \text{ et } 10^{n+1} \text{ si a} \ge 5.$

Sous multiples:

 $1 \text{mm} = 10^{-3} \text{m}$; $1\mu m = 10^{-6} m$; $1nm = 10^{-9} m$; $1pm = 10^{-12} m$.

Unités:

 $1 \text{ ua} = 1,5.10^8 \text{ km}$ $1 \text{ al} = 9,5.10^{12} \text{ km}$

Doc 3: Quelques règles

Piste de travail:

Extraire des informations

- 1. Écrire scientifiquement les diamètres des objets présentés au **Doc. 1** et les classer par ordre croissant.
- 2. Préciser l'ordre de grandeur de chaque diamètre. Utiliser les règles Doc. 3.

Interpréter

- 3. Quel est l'intérêt de l'ordre de grandeur d'une longueur?
- 4. Placer chaque objet du **Doc**. 1 sur l'axe des ordres de grandeurs Doc. 2.

Conclure

5. Rédiger une conclusion de cette activité en respectant la chronologie des étapes à suivre pour déterminer un ordre de grandeur.

6.La distance D du centre de la Terre au centre de la voie lactée est environ 265 millions de milliards de kilomètres. Après un petit calcul, un élève du tronc commun affirme que l'ordre de grandeur de D (en km) est 10¹⁶. Justifier son affirmation ou la corriger si nécessaire.

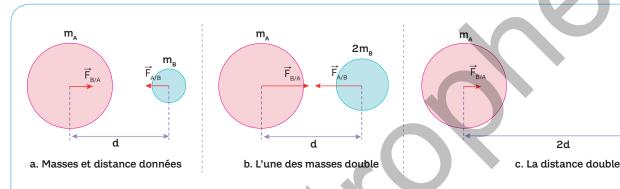
L'univers: Tout ce qui existe

Loi d'attraction universelle

Mise en situation

Le niveau des mers et des océans est en mouvement régulier.

Lors de la pleine lune, les marées sont de plus grande amplitude. Au contraire, lors du premier et du dernier quartier, l'amplitude est plus faible.


→ Comment peut-on expliquer le phénomène des marées ?

2d

Doc 1: Pleine lune

Documents à analyser :

N.B: Les vecteurs forces sont représentés avec une même échelle

Doc 2 : Forces d'interactions (les vecteurs forces sont représentés avec une même échelle).

L'intensité de la force d'attraction entre deux corps est directement proportionnelle au produit de leurs masses et inversement proportionnelle au carré de la distance séparant leurs centres.

Doc 3 : Formulation actuelle de la loi éditée par Newton dans (Philosophiae Naturalis Principia Mathematica).

Piste de travail:

Extraire des informations

- 1. En se basant sur le **Doc**. 1, postuler des hypothèses pouvant mettre en évidence la cause des marées.
- 2. Observer le **Doc**. 2, déduire les grandeurs physiques influant sur l'intensité de la force de gravitation.

Interpréter

- 3. Présenter l'analogie entre les schémas du Doc. 2 et le texte du Doc. 3.
- **4.** En se basant sur l'analogie précédente, expliquer le phénomène des marées et déduire la validité des hypothèses de la question 1.

Conclure `

Déduire de ce qui précède la modélisation mathématique convenable parmi les suivantes :

- $F = G.m_A.m_B.d^2$, $F = G.\frac{m_A.m_B}{d^2}$, $F = G.\frac{d^2}{m_A.m_B}$ • G est une constante.
- 5. Préciser l'unité (SI) de la constante G.

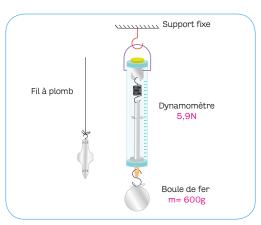
Mobiliser

6. Comment varie l'intensité de la force d'attraction universelle entre la Terre et la Lune si cette dernière s'approche de la Terre?

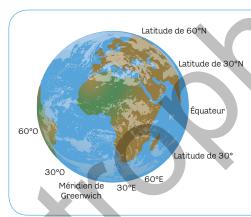
LEXIQUE Pleine lune: Lorsque la lune apparaît tel un disque • Analogie: Ressemblance

Poids d'un corps

Mise en situation


La Terre exerce sur tout objet situé à sa proximité, une action attractive modélisée par la force d'attraction universelle. Simultanément elle exerce une action répulsive à cause de sa rotation autour de l'axe passant par ses pôles. Ces actions sont modélisées par une force appelée « Poids ».

→ Quelle relation y a-t-il entre le poids d'un corps et la force d'attraction universelle qu'il subit de la part de la Terre?



Doc 1: Fil à plomb

Documents à analyser :

Doc 2: Boule en équilibre

Doc 3: Latitude

La Terre n'est pas une sphère parfaite, elle est notamment aplatie au niveau de ses pôles. Le rayon de courbure diminue en partant de l'équateur vers l'un des pôles, autrement dit il dépend de la latitude (angle qui sépare le parallèle sur lequel est situé le point et l'équateur).

Piste de travail:

Extraire des informations

1. Donner les caractéristiques du poids de la boule de fer Doc. 2.

Interpréter

- 2. En appliquant la loi de la gravitation universelle, calculer l'intensité de la force d'attraction $F_{T/B}$ modélisant l'action de la Terre sur la boule de fer.
- **3.** Comparer $F_{T/B}$ avec le module P du poids de la boule.

On donne:

- La masse de la Terre : $M_T = 5,98.10^{24} \text{kg}$;
- Le rayon moyen de la Terre : $R_T = 6380 \text{km}$;
- $G = 6,67.10^{-11} \text{ N.m}^2.\text{kg}^{-2}$.
- 4. Peut-on négliger l'effet de la rotation de la Terre autour d'elle même?
- 5. Justifier l'utilisation du fil à plomb pour matérialiser la verticale **Doc**. 1.

- **6.** Montrer que l'intensité de pesanteur q en un point d'altitude h par rapport à la surface de la Terre peut s'exprimer sous la forme suivante : $g = G.M_T/(R_T + h)^2$.
- 7. Soit g₀ l'intensité de pesanteur à la surface de la Terre, déduire l'expression de go et montrer que : $g = g_0.R_T^2/(R_T + h)^2$.
- 8. Déduire comment varie donc g en fonction de l'altitude? Justifier.
- 9. En s'appuyant sur le texte du Doc. 3, déduire comment varie q avec la latitude?

Conclure

10. En exploitant ce qui précède, exprimer le poids \vec{P} d'un corps en fonction de sa masse m et du vecteur champ de pesanteur g .

11. Un élève affirme qu'il se sentira « plus léger» sur l'équateur que sur le pôle nord. A-t-il raison ou non? Justifier.

LEXIQUE Aplatie: Non sphérique • Équateur: Parallèle tracée autour de la Terre, à mi-chemin de ses pôles

Échelles des longueurs dans l'univers

→ Activité 1

1 • Multiples et sous multiples

L'unité internationale de mesure des distances est « Le mètre **(Doc. 1)** », mais elle est inadaptée à la mesure de distances très grandes (espace) ou très petites (atomes).

Le tableau suivant donne quelques multiples et sous multiples de l'unité de mesure dans les échelles des distances microscopiques et macroscopiques.

	Nombre		Symbole	Préfixe
Échelle	10 ⁹	Milliard	G	Giga
macroscopique	10 ⁶	Million	М	Méga
Échelle	10-6	Millionième	μ	micro
microscopique	10 ⁻⁹	Milliardième	n	nano

2 • Dimensions astronomiques

• Unité astronomique

Pour mesurer les distances entre les planètes du système solaire, la distance Terre-Soleil, est considérée comme unité de mesure.

Elle est appelée : unité astronomique et notée (ua). 1ua = 1,5.10¹¹ m

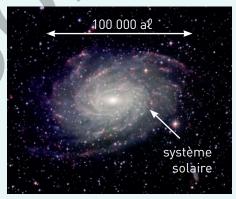
Année lumière

L'unité astronomique n'est pas adaptée à la mesure de distances plus grandes, comme celles dans la galaxie (**Doc. 2**).

On définit une autre unité : l'année lumière est la distance parcourue dans le vide par la lumière pendant une année, on la note (al).

Sachant que la célérité de la lumière dans le vide est $c = 3.10^{5}$ km.s⁻¹ et l'année contient 365,25 jours = 31557600 s.

1 al = 31557600×3.10^8 1 al $\approx 9.47.10^{15} \text{ m}$



Doc. 1 Mètre étalon

? Le saviez-vous ?

Le 7 avril 1795, le **mètre** fut adopté comme mesure étalon.

Il fut défini par « Delambre » comme **les dix millionièmes** parties de la moitié du méridien Terrestre.

Doc. 2 Notre galaxie : la voie lactée

Loi d'attraction universelle

→ Activité 2

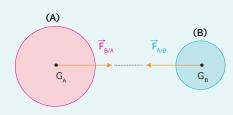
Les corps s'attirent dans l'espace à cause de leurs masses, de telle sorte que les deux forces d'interactions (Doc. 3) ont :

- Même droite d'action ; Sens contraires ; Même intensité : $F_{A/B} = F_{B/A} = F$.

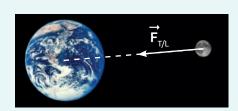
Dans le cas de deux corps (A) et (B), ponctuels ou de symétrie sphérique, cette intensité est donnée par la formule :

$$F = G. \frac{m_A.m_B}{d^2}$$

Ou:


- \mathbf{m}_{Δ} et \mathbf{m}_{B} : Les masses respectives de (A) et (B);
- d : La distance séparant les centres de gravité des deux corps.
- $G = 6.67.10^{-11} \text{ N.m}^2 \cdot \text{kg}^{-2}$: La constante d'attraction universelle.

EXEMPLE: L'expression de l'intensité de la force modélisant l'action de


laTerre sur la Lune **(Doc. 4)** est :

$$F_{T/L} = G. \frac{M_T.M_L}{d^2}$$

A.N.:
$$F_{T/L} = 6,67.10^{-11} \cdot \frac{5,98.10^{24} \cdot 7,32.10^{22}}{(1,5.10^{11})^2} \simeq 2.10^{20} \text{N}$$

Doc. 3 Interaction gravitationnelle entre deux corps sphériques

Doc. 4 Terre-Lune

III La pesanteur

→ Activité 3

1 • Signification du poids d'un corps

La Terre applique sur les corps en interaction avec elle deux actions :

- **Une action attractive** à cause de sa masse modélisée par la force d'attraction universelle.
- **Une action centrifuge** à cause de sa rotation autour de l'axe passant par ses pôles.

Le poids d'un corps est la somme de ces deux actions.

En négligeant la force centrifuge devant la force centripète, on peut écrire :

$$P = F$$

2 • Intensité du champ de pesanteur

On considère un corps ponctuel (satellite artificiel par exemple **Doc**. **5**) de masse m se trouvant à l'altitude h par rapport au sol.

La distance entre le centre de ce corps et le centre de la Terre est donc : $d = R_T + h$.

Avec R_T : le rayon moyen de la Terre.

L'intensité du poids du corps à cette altitude est : $P = G \frac{m.M_T}{(R_T + h)^2} = m \frac{G.M_T}{(R_T + h)^2}$

On pose:
$$g_h = \frac{GM_T}{(R_T + h)^2}$$

On l'appelle intensité de pesanteur à l'altitude h. L'intensité du champ de pesanteur g_o au niveau de la surface de la Terre

(Doc. 6) (h = 0) sera **donc:**
$$g_0 = \frac{GM_T}{R^2}$$

A.N.:
$$g_0 \approx 9,8 \text{ N.kg}^{-1}$$
.

REMARQUE: L'intensité de pesanteur ne dépend pas de la masse du receveur, mais de la masse de l'acteur et de la distance entre leurs centres de gravité.

3 • Variation de l'intensité de pesanteur avec l'altitude

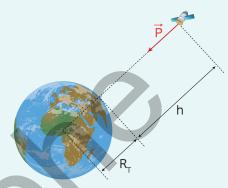
À partir des expressions de g_h et g_0 , on peut établir la relation entre g_h et g_0 .

On a:
$$\frac{g_h}{g_0} = \frac{R_T^2}{(R_T + h)^2}$$
 D'où: $g_h = g_0 \frac{R_T^2}{(R_T + h)^2}$

REMARQUE: On peut aussi écrire : $P_h = P_0 \frac{R_T^2}{(R_T + h)^2}$

Avec: $P_h = mg_h$ Poids du corps à l'altitude h;

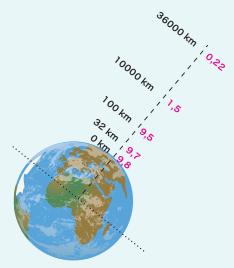
 $P_0 = mg_0$ Poids du corps à la surface de la Terre.


Lorsqu'on s'élève dans le ciel (Doc. 7), l'intensité de pesanteur diminue.

EXEMPLE: L'intensité de pesanteur à l'altitude $h = 100 \, \text{km}$ au-dessus du sol Terrestre est : $g_h = 9,5 \, \text{N.kg}^{-1}$. L'intensité de pesanteur diminue avec l'altitude.

REMARQUE: Le pourcentage duquel l'intensité de pesanteur a diminué du sol jusqu'à l'altitude $h = 100 \, \text{km}$ est : $\% = \frac{g_0 - g_h}{g_0}.100$. **A.N.:** $\% = 3 \, \%$.

Le saviez-vous ?


Un corps ponctuel est un corps dont les dimensions sont négligeables devant la distance d'observation (de celui qui observe le mouvement).

Doc. 5 Poids d'un satellite

Doc. 6 Niveau de référence

Doc. 7 g et altitude

1 Y a-t-il différence entre la force d'attraction universelle et le poids d'un corps?

Pour Chaque question indiquer la (ou les) proposition(s) juste(s).

	A	В	С	D
1 L'unité du poids d'un corps est	Le kilogramme	Le Newton	Le mètre	Le gramme
2 La force d'attraction universelle modélisant l'action de la Terre sur un corps est	Une force de contact	Une force à distance	Une force localisée au centre de gravité du corps ;	Une force répartie.
L'intensité de la force d'at- traction entre deux corps sphériques de masses m _A et m _B de rayons R ₁ et R ₂ et de contours distants de la distance d est	$F=G.\frac{m_A.m_B}{d}$	$F=G.\frac{m_A.m_B}{d^2}$	$F = G \cdot \frac{m_{A_1} m_B}{(d + R_1 + R_2)^2}$	$F=G.\frac{m_A+m_B}{d^2}$
4 L'intensité de pesanteur Terrestre	Augmente lorsqu'on s'élève dans le ciel	Diminue lorsqu'on s'élève dans le ciel	Augmente sur sol lorsqu'on se dirige vers le pôle nord de la Terre	Reste toujours constante
5 Le poids d'un corps à la surface de la Lune vaut le sixième de sa valeur sur le sol Terrestre car	Sa masse sur la Lune vaut le sixième de sa valeur sur Terre	La masse de la Lune vaut le sixième de la masse de la Terre	La Lune est très loin de la Terre	L'intensité de pesan- teur sur la Lune vaut le sixième de sa valeur sur Terre
6 Lorsqu'un corps tombe	il est attiré par la Terre	Il attire la Terre	Ils s'attirent mutuellement	IL n'y a aucune attrac- tion entre le corps et la Terre
7 L'ordre de grandeur du diamètre d'un atome est	10 ⁻¹⁰ m	10 ⁻¹⁵ m	10 ⁻⁶ m	10° m

2 Mettre une croix (X) dans la case qui convient

	Vrai	Faux
Un ballon qui monte dans le ciel n'est pas attiré par la Terre		
2 La Lune ne tombe pas sur Terre parce qu'elle tourne		
3 L'intensité de pesanteur sur Terre est minimale à l'équateur		
$\dot{\mathbf{A}}$ à la surface de la Terre le poids d'un corps s'exprime par : $P = m.g_0$		
5 Le poids d'un corps augmente avec la l'altitude lorsque cette dernière augments		

Énoncé

Le satellite européen METOP-A, lancé en 2006, est le premier satellite dont la trajectoire passe au-dessus des pôles géographiques, il a été destiné à la récolte d'informations sur l'atmosphère afin d'améliorer les prévisions météorologiques.

On donne:

- La masse du satellite : m = 4, 1tonnes ;
- La trajectoire du satellite est circulaire et située à l'altitude $h=8,2.10^2\,\text{km}$ par rapport au sol Terrestre.
- La durée pour accomplir un tour est 101 min.
- G = 6,67.10⁻¹¹ (SI), $M_T = 5,97.10^{24} \text{kg}$, $R_T = 6,38.10^6 \text{m}$.
- 1 Calculer la valeur de l'intensité de la force gravitationnelle, modélisant l'action de la Terre sur le satellite.
- **2** Déduire la valeur de la force gravitationnelle, modélisant l'action du satellite sur la Terre.
- **3** Donner les caractéristiques de ces deux forces et les représenter sur un schéma.
- 4 Calculer la valeur de l'intensité de pesanteur à l'altitude du satellite, et déduire la valeur de l'intensité du poids du satellite.

Satellite METOP-A

LIRE

Il faut bien lire l'énoncé, et souligner « au fluorescent » les termes intéressants et les données.

Solutions

1 • On sait que l'expression de l'intensité de la force de gravitation universelle modélisant l'action de la Terre sur le satellite est : $F_{\text{T/S}} = G \cdot \frac{M_{\text{T}} \cdot m}{d^2}$

Avec: $d = R_T + h$, on obtient: $F_{T/S} = G \cdot \frac{M_T \cdot m}{(R_T + h)^2}$

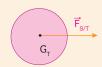
AN:

RÉDIGER

Il faut écrire d'abord les expressions littérales avant de passer aux applications numériques.

Conversions

$$m = 4, 1, t = 4, 1.10^3 kg, h = 8, 2.10^2 km = h = 8, 2.10^5 m$$


alors:
$$F_{T/S} = 6,67.10^{-11} \cdot \frac{5,97.10^{24}.4,1.10^3}{(6,36.10^6 + 8,2.10^5)^2} = 3,1.10^4 \text{ N}$$

2 • D'après le principe des actions réciproques, les deux forces d'interactions doivent avoir la même intensité.

Donc: $F_{S/T} = F_{T/S} = 3, 1.10^4 N.$

3 • Les caractéristiques des forces $\vec{F}_{T/S}$ et $\vec{F}_{S/T}$ sont:

	-1
₹ _{T/s}	₹s/т
Direction: droite (G _s G _T) Sens: de G _s vers G _T	Point d'application : G_T Direction : droite (G_sG_T) Sens : de G_T vers G_s Intensité : $F_{s/T} = 3,1.10^4$ N

$$g = G. \frac{M_T}{(R_T + h)^2}$$

AN:
$$g = 6,67.10^{-11} \cdot \frac{5,97.10^{24}}{(6,36.10^6 + 8,2.10^5)^2} = 7,7N.kg^{-1}$$

APPLICATION NUMÉRIQUE

S'assurer que les données sont dans le SI, sí non íl faut les convertír.

Il faut respecter le nombre de chiffres significatifs.

RAISONNER

Il faut justifier en citant les lois utilisées.

Maîtriser ses connaissances

· Données :

Constante de gravitation Universelle : $G = 6,67.10^{-11} (S.I)$.

1 L'ordre de grandeur

Exprimer (en mètre) les longueurs suivantes, et écrire le résultat sous forme d'écriture scientifique avec trois chiffres significatifs :

- Diamètre de la Terre : 12750km

- Les plus petites bactéries mesurent environ 0,1à 0,2 micromètre

Longueur d'une molécule : 0,43 nm
Longueur d'un microbe : 50 μm

- La taille d'un virus ne dépasse pas les 400 nm

- Diamètre de notre galaxie : $1,2.10^{10}\,\mathrm{km}$

- Rayon de l'atome de Fluor : 42 pm

2 Sur la Terre ou la Lune

On considère un engin de masse m = 1,2t.

 $\mathbf{1} \bullet \text{Calculer } P_{\text{o} \tau}$, la valeur du poids de cet engin à la surface de la Terre.

2 • Calculer la valeur de P_{0L} , poids du même engin à la surface de la Lune sachant que : $q_{0T} = 6.q_{0L}$.

3 • Déterminer l'altitude h par rapport à la surface de la Terre où doit se trouver l'engin pour qu'il ait un poids Terrestre $P_{h\tau}$ égal à P_{0L} .

• Données :

 $g_{0T} = 9.8 \text{ N.kg}^{-1}, R_T = 6378 \text{ km}$

3 Satellite de Mars

Phobos est un satellite de la planète Mars, qui gravite autour d'elle suivant une trajectoire circulaire de rayon $r = 9378 \, \text{km}$ On considérera que la planète Mars et son satellite sont à répartition sphérique de masse.

1 • Exprimer l'intensité $F_{M/P}$ de la force modélisant l'action de Mars sur son satellite Phobos.

2 • Donner l'unité de la constante de gravitation.

3 • Calculer l'intensité de cette force.

4 • Représenter sur un schéma le vecteur modélisant cette force.

• Données :

Masse de la planète Mars : $M_M = 6,42.10^{23} \text{ kg}$; Masse du satellite Photos : $M_P = 9,6.10^{15} \text{ kg}$.

Renforcer ses capacités

4 Satellite artificiel

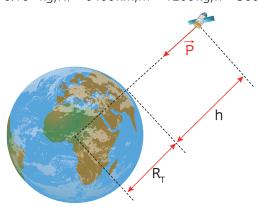
1 • Un satellite artificiel (S) de masse m se trouve à l'altitude h par rapport au sol Terrestre.

a. Écrire l'expression de l'intensité de la force modélisant l'attraction de la Terre au satellite (S).

b. Calculer la valeur de cette force.

• Données :

 $m = 1200 \, kg, h = 36000 \, km$


2 • Champs de pesanteur :

a. Écrire l'expression de l'intensité de pesanteur g_h à l'altitude h par rapport au sol Terrestre. En déduire son expression g_{ot} au niveau du sol Terrestre. Calculer la valeur de g_{ot} .

b. Calculer la valeur de h où l'intensité de pesanteur devient : $g_h = \frac{g_{0T}}{4}$.

• Données :

 $M_T = 6.10^{24} \text{kg}, R_T = 6400 \text{km}, m = 1200 \text{kg}, h = 36000 \text{km}$

5 Poids et altitude

La masse d'un alpiniste et son équipement est de 100 kg.

 Calculer le poids de l'alpiniste équipé au niveau de la mer.

2 • Calculer le poids de l'alpiniste équipé au sommet d'Everest d'altitude 8848 m par rapport au niveau de la mer.

3 • De quel pourcentage ce poids a-t-il varié?

4 • Un compagnon de cet alpiniste a, au sommet de cette montagne, le même poids de l'alpiniste au niveau de la mer.

Quelle est la masse de ce compagnon?

6 Pesanteur au voisinage de la planète Mars

- 1 Donner l'expression de l'intensité de pesanteur à la surface de Mars en fonction de son rayon $R_{\rm M}$ et sa masse volumique $\varrho_{\rm M}$.
- **2** En déduire l'intensité P_0 du poids d'un corps de masse $m = 2500 \, kg$ se trouvant sur son sol.
- **3** À quelle altitude par rapport au sol de Mars ce poids deviendrait $P = \frac{P_0}{16}$?

• Données :

 $R_{\text{M}}=3400\,\text{km}$, $\varrho_{\text{M}}=4000\text{kg.m}^{\text{-3}}$

Le volume d'une sphère de rayon R est : $V = \frac{4}{3}\pi R^3$

Perfectionner ses compétences

7 Comparaison de forces

Deux balles de tennis (notées 1 et 2) de même masse m = 58g, sont posées sur le sol, de façon à ce que leurs centres de gravités sont distants de $d = 50 \, \text{cm}$.

- **1** Exprimer et calculer les intensités des forces d'interaction gravitationnelles $\vec{F}_{1/2}$ et $\vec{F}_{2/1}$ existantes entre les deux balles.
- 2 Représenter ces forces sur un schéma.
- **3** Comparer la force exercée par une balle sur l'autre à la force exercée par la Terre sur l'une d'elles.
- 4 Conclure pourquoi les balles n'entrent pas en collision.

• Données :

 $M_T = 6.10^{24} \text{kg}$

 $R_{T} = 6378 \, \text{km}$

8 Variation de l'intensité de pesanteur

- **1** L'intensité de pesanteur en un lieu de la surface de la Terre au niveau de la mer est $g_{\scriptscriptstyle 0}$. Calculer son intensité au sommet du mont Toubkal d'altitude $h=4165\,m$ par rapport au niveau de la mer.
- 2 Calculer le pourcentage duquel a diminué cette intensité de pesanteur depuis le niveau de la mer jusqu'au sommet du mont Toubkal.
- **3** À quelle altitude H par rapport au niveau de la mer, cette intensité aura diminuée de 1%?

• Données :

 $g_0 = 9,80 \,\text{N.kg}^{-1}, R_T = 6378 \,\text{km}$

9 Application de la gravité

L'intensité de pesanteur est une grandeur mesurable à l'aide d'appareils appelés gravi mètres.

La mesure de cette intensité de pesanteur au sommet du mont Toubkal d'altitude h_1 au-dessus du niveau de la mer donne la valeur g_1 , et donne la valeur g_2 au sommet du mont Everest d'altitude altitude h_2 au-dessus du niveau de la mer.

- **1** Donner l'expression de l'intensité de pesanteur à une altitude h au-dessus du niveau de la mer, en fonction de G, M_{τ} (masse de la Terre), R_{τ} (rayon de la Terre) et h.
- **2** Déduire des mesures précédentes de l'intensité de pesanteur, les valeurs de $R_{\scriptscriptstyle T}$ et $M_{\scriptscriptstyle T}$.

• Données :

 $h_1 = 4165 m$,

 $h_2 = 8848 \,\mathrm{m}$

 $g_1 = 9,825 \text{ N.kg}^{-1}$,

 $g_2 = 9,811N.kg^{-1}$.

10 Point d'équigravité

Ganymède est le septième satellite de Jupiter, et le plus gros des satellites du système solaire, même plus grand que certaines planètes.

Ganymède gravite sur une trajectoire supposée circulaire de rayon moyen ${\bf r}$.

Une sonde spatiale passe entre Jupiter et Ganymède à une distance d du centre de Ganymède.

- **1** Écrire les expressions des intensités de pesanteur g_{σ} et g_{σ} crées respectivement par Ganymède et Jupiter au niveau de la sonde spatiale.
- **2** Exprimer d en fonction de r, M_G et M_J en un lieu d'équigravité où $g_G = g_J$. Calculer la valeur de d.

• Données :

 $r = 1,07.10^6 \, \text{km}, M_G = 1,49.10^{23} \, \text{kg}, M_J = 1,9.10^{27} \, \text{kg}.$

11 Masse de Jupiter

En mars 1979, la sonde Voyager 1 (de masse) s'approche de Jupiter que l'on assimile à une sphère de rayon R_{\perp} et de masse M_{\perp} répartie sphériquement.

Aux altitudes $h_1 = 2,78.10^5 \text{km}$ et $h_2 = 6,50.105 \text{km}$, la sonde mesure respectivement $g_1 = 1,04 \text{N.kg}^{-1}$ et $g_2 = 0,24 \text{N.kg}^{-1}$.

- 1 Exprimer en fonction des données la masse de Jupiter.
- 2 Calculer sa valeur.